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The pair correlation function of hard hyperspheres in six, seven and eight dimensions
is obtained from Monte Carlo simulations. The value of the pair correlation function
at contact is compared with the results from molecular dynamics calculations and
a variety of theoretical approaches. Remarkably good agreement is found with the
simple, closed-form equations of Y. Song, E. A. Mason and R. M. Stratt, J. Phys.
Chem., 93:6916–6919 (1989). The Monte Carlo results for the equation of state are
compared with the theoretical expressions of M. Baus and J. L. Colot, Phys. Rev. A,
36:3912 (1987), M. Luban and J. P. J. Michels, Phys. Rev A, 41:6796 (1990), and
high order virial expansions. In addition, in seven dimensions, comparisons are made
with the exact PY solution provided by M. Robles, M. L. de Haro and A. Santos, J.
Chem. Phys., 120:9113 (2004). Very good agreement was observed between theory and
computer simulation in all dimensions.
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1. INTRODUCTION

Hard hyperspherical systems in arbitrary spatial dimension, D, have been and
remain, an active area of research in statistical mechanics.(1−3) Song, Mason and
Stratt(4) have proposed a theoretical equation which predicts the pair correlation
function at contact for any reduced number density, ρ, and any dimension by
assuming that the probability that a second particle will be found within a small
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region about a reference particle is the product of independent probabilities for
each dimension. Their equation for the pair correlation function at contact, G(σ ),
is

G(σ ) = 1 − αη

(1 − η)D
(1)

where σ is the diameter of the D dimensional hypersphere, η is the packing fraction

η = B2ρ

2D−1
(2)

and

α = D − 2D−1 B3

B2
2

(3)

B2 and B3 are the second and third virial coefficients, respectively. These equations
have no adjustable parameters.

In a recent publication(5) we have compared the predictions of their equations
with our Monte Carlo, MC, computer simulations in one through five dimensions.
Excellent agreement between their theory and the MC data, within statistical
errors, was found in all dimensions studied.

One of the major goals of this investigation is to further test their theory in six,
seven and eight dimensions. In addition, we report and compare our MC equation
of state data to a variety of other theoretical and molecular dynamic simulation
results.

The compressibility factor, Z , is defined as

Z = Pβ/ρ (4)

where β is 1/kB T ; kB is Boltzmann’s constant, T is the absolute temperature and
P is the pressure. The value of the pair correlation function at contact is related
to the equation of state, Z as a function of ρ, in D dimensions(6) by

Z = 1 + ρB2G(σ ) (5)

B2 has the value(7) of

B2 = π D/2σ D

2�(1 + D/2)
(6)

where � is the Gamma Function. The contact value of the pair correlation function
from our simulations was determined by a least-squares fit(8) with extrapolation
to contact. The resultant G(σ ) values were used to determine the equation of state
via Eq. 5. This procedure was employed in our earlier studies.

The virial expansion of the equation of state(9)

ZV = 1 + B2ρ + B3ρ
2 + B4ρ

3 + B5ρ
4 + · · · BV +1ρ

V (7)
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which is expected to describe low and moderate density fluids in all dimensions
can be compared to the simulation results. In the case of hard hyperspheres ZV is
independent of the temperature since the virial coefficients, (BV , V = 2, 3, . . .),
are independent of temperature. A number of the B’s (B2, B3 and B4) are known
exactly(7,10,11) for D dimensional hyperspheres because the necessary multidimen-
sional integrals can be evaluated analytically. Other values (B5, B6, B7, B8, B9 and
B10) are known(10,12−18) from extensive numerical calculations.

The ZV expansion, Eq. 7, includes the V + 1-th virial coefficient. Employing
all the known values for BV , Z9 has been computed for six, seven and eight
dimensions. Using the notation that [n, m] indicates an approximant that has a
polynomial of degree n for its numerator and a polynomial of degree m for its
denominator, both the [4,5] and [5,4] Padé approximants(19,20) in six through eight
dimensions were determined from the virial expansions. In six dimensions we find
that

Z[4,5] = 1 + 5.6358ρ + 11.648ρ2 + 10.539ρ3 + 3.4170ρ4

1 + 3.0520ρ + 1.4857ρ2 − 0.8228ρ3 + 0.0694ρ4 + 0.0154ρ5
(8)

Z[5,4] = 1 + 5.4689ρ + 10.758ρ2 + 8.8023ρ3 + 1.9483ρ4 − 0.4313ρ5

1 + 2.8851ρ + 1.0270ρ2 − 0.9939ρ3 + 0.1830ρ4
(9)

in seven dimensions that

Z[4,5] = 1 + 5.8810ρ + 12.461ρ2 + 11.291ρ3 + 3.5776ρ4

1 + 3.5187ρ + 2.5736ρ2 − 0.4615ρ3 − 0.0638ρ4 + 0.0261ρ5

(10)

Z[5,4] = 1 + 4.6594ρ + 5.8738ρ2 − 1.3949ρ3 − 6.6540ρ4 − 2.7188ρ5

1 + 2.2970ρ − 1.1277ρ2 − 2.4788ρ3 + 0.4591ρ4

(11)

and in eight dimensions that

Z[4,5] = 1 + 5.4951ρ + 10.767ρ2 + 8.8764ρ3 + 2.5049ρ4

1 + 3.4657ρ + 2.7671ρ2 − 0.0664ρ3 − 0.0859ρ4 + 0.0163ρ5

(12)

Z[5,4] = 1 + 7.4067ρ + 20.2895ρ2 + 25.5900ρ3 + 14.5259ρ4 + 2.7554ρ5

1 + 5.3774ρ + 8.4107ρ2 + 3.3474ρ3 − 0.4047ρ4

(13)
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Another possible equation of state is the Baus-Colot(21) rescaled virial ex-
pansion given by

Z BC = 1 + (b2 − D)η + (b3 − b2 D + D(D − 1)/2)η2

(1 − η)D
(14)

where bn = 2(D−1)(n−1) Bn/Bn−1
2 . This representation of the equation of state has

no adjustable parameters and only requires knowledge of b2 and b3.
The Luban-Michels(22) approximation is:

ZL M = 1 + b∗
2 X (1 + [(b∗

3/b∗
2) − ζ (X )(b∗

4/b∗
3)]X )

1 − ζ (X )(b∗
4/b∗

3)X + [ζ (X )) − 1](b∗
4/b∗

2)X2
(15)

where X = ρ/ρcp, ζ is a function of X and b∗
n = Bnρ

n−1
cp . Here ρcp is the lattice

close packed density. ζ (X ) can be determined by using values of G(σ ) in Eq. 5 to
find Z and then inverting Eq. 15 to yield

ζ (X ) = b∗
3[b∗

2 X (b∗
2 + b∗

3 X ) − (b∗
2 − b∗

4 X2)(Z − 1)]

b∗
4 X [b∗2

2 X + (b∗
3 X − b∗

2)(Z − 1)]
(16)

2. METHOD

The hyperspheres are initially arranged in a simple hypercubic lattice. The
number of particles, N , the number density of the state and the dimensionality of
the system of interest are pre-selected input parameters. These determine the size
of the system simulation hyperbox. The hyperspheres are randomly moved using
the standard Metropolis Monte Carlo technique(23) to form an equilibrated fluid.
We have employed the shuffled, nested Weyl random number generator(24) which
empirical tests have shown to work well in parallel Monte Carlo calculations.(25)

In the case of hard hyperspheres the usual Metropolis energy check becomes a
simple test for overlaps since the pair potential of the particles separated by the D
dimensional distance R is given by

U (R) =
{

∞ R < σ

0 R ≥ σ
(17)

The computer simulation proceeds by attempting to move, in turn, all of
the N particles in the simulation hyperbox; this is called a pass. A new trial
position is randomly selected from a hyperbox surrounding the current location
of the center of mass of the hypersphere. If the new position is not accepted,
the hypersphere remains at its current location. The move may or may not be
accepted but is always counted in the averaging. The acceptance ratio, the number
of accepted moves divided by the number of total moves, is monitored. This
ratio, as well as, the maximum magnitude of an allowed displacement for each
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Table I. Six Dimensional MC Results

Maximum Acceptance
ρ PreEq PostEq Displacement Ratio G(1) LMa G(1) BCb G(1)

0.10 1000 10000 5.00 0.58 1.091(3) 1.093 1.092
0.20 1000 10000 4.00 0.31 1.186(1) 1.186 1.190
0.30 1000 10000 0.50 0.29 1.285(6) 1.289 1.297
0.40 1000 10000 0.30 0.32 1.395(8) 1.396 1.412
0.50 1000 10000 0.20 0.34 1.508(0) 1.506 1.536
0.60 1000 10000 0.16 0.33 1.630(7) 1.634 1.669
0.70 1000 10000 0.12 0.35 1.759(9) 1.769 1.814
0.80 1000 10000 0.08 0.42 1.897(6) 1.892 1.970
0.90 2500 10000 0.045 0.55 2.045(3) 2.038 2.139

aRef. 22.
bRef. 21.

density and dimension is listed in Tables I, II and IV. Standard periodic boundary
conditions(26) are employed in testing for overlaps and in maintaining a constant
number of particles in the simulation hyperbox. The efficiency of the calculation
was increased six-fold by partitioning(27) the simulation hyperbox into subcells.

As is well-known the Metropolis MC algorithm requires many passes in
order to converge to an equilibrium state. Hence, some number of passes must be
discarded; we refer to these discarded passes as the pre-equilibrium stage (PreEq
in the tables). Typically, on the order of one to five thousand passes are needed in
order to reach the equilibrated state. Then an additional one to ten thousand passes
are generated (labelled PostEq) for analysis.

Even in the equilibrated regime there is still serial correlation between the
passes. One way in which we addressed this issue was to sample G(R) only at a
“save” interval of 10 passes. This procedure allows some of the serial correlation

Table II. Seven Dimensional MC Results

Maximum Acceptance
ρ PreEq PostEq Displacement Ratio G(1)

0.10 1000 10000 1.50 0.61 1.066(2)
0.20 1000 10000 2.00 0.35 1.138(2)
0.30 1000 10000 0.50 0.30 1.208(0)
0.40 1000 10000 0.30 0.33 1.280(8)
0.50 1000 10000 0.18 0.40 1.353(4)
0.60 1000 10000 0.15 0.38 1.431(5)
0.70 1000 10000 0.11 0.41 1.510(7)
0.80 1000 10000 0.07 0.50 1.594(0)
0.90 4000 10000 0.04 0.63 1.680(7)
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Table III. Seven Dimensional Theoretical

Results for G(1)

ρ PYVa PYCa CSa LMa BCa

0.10 1.066 1.068 1.068 1.067 1.068
0.20 1.133 1.139 1.138 1.137 1.139
0.30 1.199 1.212 1.210 1.210 1.214
0.40 1.267 1.289 1.286 1.286 1.291
0.50 1.335 1.370 1.364 1.367 1.372
0.60 1.404 1.454 1.446 1.453 1.457
0.70 1.475 1.543 1.531 1.544 1.545
0.80 1.547 1.635 1.620 1.641 1.637
0.90 1.620 1.732 1.713 1.743 1.733

aRef. 33.

to dissipate from the previously sampled value of G(R). In addition, at least
15 statistically independent sets of simulations were performed in parallel and
averaged together. This results in very small error bars in G(R), on the order of
10−3 to 10−4.

The MC method was implemented using the SWC(28−30) (small Web com-
puting) Java framework. This framework is a Master-Worker MIMD (Multiple-
Instruction, Multiple-Data) parallel programming model and can be used as
Web-based collaborative software or as a multi-threaded process on a SMP (sym-
metric multi-processing) machine or even as a set of distributed, independent
processes on separate machines.

Table IV. Eight Dimensional MC Results

Maximum Acceptance
ρ PreEq PostEq Displacement Ratio G(1) LMa G(1) BCb G(1)

0.10 400 1000 2.00 0.66 1.050(0) 1.049 1.048
0.20 400 1000 2.00 0.42 1.100(3) 1.099 1.097
0.30 400 1000 1.70 0.26 1.144(5) 1.151 1.148
0.40 400 1000 0.40 0.28 1.192(0) 1.206 1.199
0.50 500 1000 0.30 0.27 1.239(3) 1.264 1.252
0.60 500 1000 0.15 0.42 1.288(4) 1.325 1.306
0.70 1000 1000 0.105 0.48 1.338(7) 1.391 1.361
0.80 1000 1000 0.055 0.63 1.390(5) 1.461 1.417
0.90 4500 1000 0.027 0.77 1.440(9) 1.537 1.475

aRef. 22.
bRef. 21.
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An order parameter(31), O ,

O =
∑D

j=1

∑N
i=1 cos[4π Xi ( j)	1/D]

DN
(18)

was used to monitor when the system had reached equilibrium. Here, Xi ( j) is the
j-th position component of the i-th hypersphere. The order parameter has a value
of 1 for a completely ordered lattice and randomly oscillates about 0 when the
system has equilibrated in the fluid state.

To calculate G(R) a histogram of the number of pair separations as a function
of separation distance, R, was accumulated on a grid with spacing 
R. Normal-
ization of G(R) required the number density of pairs, 0.5	 (N − 1) and their
occupied differential volume, VD((R + 
R)D − RD), where VD is related to the
surface area of a D dimensional hypersphere(32)

VD = π D/2

�(1 + D/2)
. (19)

3. RESULTS

In all of this work, the hard hypersphere diameter, σ , is set equal to one and
therefore, all quantities are reported in reduced units. Tables I, II and IV present
the simulation results for six, seven and eight dimensions, respectively; in six
dimensions N = 4096, in seven dimensions N = 2187 and in eight dimensions
N = 6561. The pair correlation functions at contact, G(1), are listed in the ta-
bles. To estimate an empirical error on the extrapolated G(1) value, the first five
G(R) points for which R is greater than 1.0 are refit by a linear least-squares line
varying each point by 1.96 standard deviations; i.e. the 95% confidence interval.
These error estimates range between 1 × 10−4 and 5 × 10−4. The data reported in
Tables I, II and IV indicate the magnitude of the uncertainty of the last deci-
mal place by the number in parentheses. In addition, Tables I, III and IV show
theoretical results for G(1).

To predict a value of ZL M following the analysis of Luban and Michels(22) and
Robles, de Haro and Santos(33), a linear fit to ζ (X ) vs X was made for 0.5 ≤ ρ.
Figure 1 shows that this linear approximation is reasonable at higher densities.
This fit line was then substituted into Eq. 15. Thus, ZL M requires two adjustable
parameters (since one performs a straight line fit) in addition to knowledge of b∗

2,
b∗

3 and b∗
4.

Figure 2 displays the pair correlation function in six dimensions for a rep-
resentative range of densities: ρ = 0.3, 0.5 and 0.7. One notes that there is little
structure present; there is no second peak even at the highest density. Note that the
error bars at all values of R, and at all densities, are less than 10−3.



306 Bishop and Whitlock

0

2

4

6

8

10

12

0 0.05 0.1 0.15 0.2

ζ (X)

X

Fig. 1. The variation of ζ (X ) with X at different densities and dimensions. The Luban-Michels linear
fit for each dimension is presented: Filled triangles 6D MC data, (. . .) fit; filled circles 7D MC data,
(- - -) fit; and + 8D MC data, (—) fit.

Figure 3 presents a variety of Z vs ρ data for six dimensional hyperspheres.
The MC simulation data is in excellent agreement with the MD data of Lue
and Bishop(34) and the theoretical [4,5] and [5,4] Padé approximants. The error
bars on the MC results are smaller than the plotted symbols. In Table I the
ZL M approximation employed the six dimensional lattice close-packed density(18)

8/
√

3. The Z BC approximation followed directly from Eq. 14. These Z values have
been used in Eq. 5 to predict G(1) and the results are listed in Table I. As was found
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Fig. 2. The pair correlation function in six dimensions for ρ = 0.30 (- - -) ρ = 0.50 (. . .) and ρ = 0.70
(—).
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Fig. 3. Equation of State in Six Dimensions MC (©), MD(34) (�), Z[4,5] Padé (—), Z[5,4] Padé (. . .).

in the earlier work of Bishop, Masters and Vlasov(16) in four and five dimensions,
the Luban-Michels approximation agrees more closely with the MC data than the
Baus-Colot approximation. This reflects the fact that the linear approximation is
well justified over a wide range of densities in six dimensions.

Figure 4 presents the pair correlation function in seven dimensions for the
same representative range of densities as in Fig. 2. In seven dimensions one
observes even less structure than was the case in six dimensions. Robles, de Haro

0.5
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7D

Fig. 4. The pair correlation function in seven dimensions for ρ = 0.30 (- - -) ρ = 0.50 (. . .) and
ρ = 0.70 (—).
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Fig. 5. Equation of State in Seven Dimensions MC (©), MD(34) (�), MD(33) (�),
Z[4,5] Padé (—), Z[5,4] Padé (. . .).

and Santos(33) have made an extensive study of seven dimensional hard spheres
and have obtained equation of state values from many different approximations,
including their own exact solution to the Percus Yevick virial equation, PY V ,
and the Percus Yevick compressibility equation, PY C . They presented a new
Carnahan-Starling(35) approximation, ZC S , by weighting the Z PY V and Z PY C

values

ZC S = αZ PY V + (1 − α)Z PY C (20)

with α = 5/6. This empirical form was suggested by the observation that the two
different PY calculations bracket the simulation data in three dimensions,(4) five
dimensions(36) and seven dimensions.(33) Also they performed MD simulations for
N = 64 over a wide range of reduced densities (0.1 up to 1.95). We have used their
reported Z values (their Table II) to determine the corresponding G(1) predictions
which are listed in Table III. The G(1) resulting from the published Z PY C and
Z PY V values bracket the MC numerical data and the new ZC S approximation
displays good agrement with the MC results. Comparing the other theoretical
results, the Baus-Colot G(1) agrees better with the MC results at higher densities.
The linearization of ζ (X ) is less justified in seven dimensions than was the case
in six dimensions.

Figure 5 illustrates the excellent agreement of Z in seven dimensions among
the present MC investigations, the MD studies by Robles, de Haro and Santos(33)

and Lue and Bishop(34) and the Padé approximants for seven dimensional hyper-
spheres. Again, the error bars in the MC results are smaller than the plotted sym-
bols. The fine agreement of the Padé approximants is the result of the availability
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Fig. 6. The pair correlation function. The symbols are the MD data of Lue and Bishop(37) triangles
D = 7, ρ = 0.9 and N = 2187; circles D = 6, ρ = 0.5 and N = 4000; squares D = 7, ρ = 0.6 and
N = 4000. The lines are the current MC data.

of the higher order virial coefficients. Also note the good agreement, especially
at low and moderate densities, of the Robles, de Haro and Santos(33) MD data
which used only 64 particles. At the high dimensions studied here particles will
not influence each other very much until the system approaches the freezing den-
sity and even a small number of particles will display behavior typical of a larger
sample.

The pair correlation function G(R) in six and seven dimensions has also been
computed by Lue and Bishop(37) using MD and their results are compared to the
Monte Carlo data in Fig. 6. The agreement with the MC results is excellent and
this is consistent with the agreement of the equation of state computed by both
simulation methods.

Figure 7 presents the pair correlation function in eight dimensions for the
same representative range of densities as in Figs. 2 and 4. Again one observes very
little structure.

Figure 8 illustrates the expected agreement of Z between the MC investi-
gations and the Padé approximants for eight dimensional hyperspheres. In Table
IV the ZL M approximation employed the eight dimensional lattice close-packed
density,(18) 16. The Baus-Colot form is a more accurate approximation to the
MC data than the Luban-Michels equations. More high density states and/or a
non-linear functional form of ζ (X ) may be needed to enhance the behavior of the
Luban-Michels theory.

Figure 9 presents the predictions of the Song, Mason and Stratt(4) (SMS)
theory for 1/G(1) versus the packing fraction compared with our MC data. The
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Fig. 7. The pair correlation function in eight dimensions for ρ = 0.30 (- - -) ρ = 0.50 (. . .) and
ρ = 0.70 (—).

results clearly show, as was found previously in four and five dimensions, that the
SMS prediction is excellent at low densities and quite close to the simulation data
at higher densities for six through eight dimensions. Their method based upon
mean field theory, the Carnahan-Starling equation of state, and independence in
each dimension has remarkable predictive power for the fluid states. Moreover,
their closed-form equations are very simple.
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Fig. 8. Equation of State in Eight Dimensions MC (©), Z[4,5] Padé (—), Z[5,4] Padé (. . .).
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Fig. 9. Comparison of the MC data to the theory of SMS (Song, Mason and Stratt(4) MC D = 6: (©),
MC D = 7: (�), MC D = 8: (�) and theory (—).

4. CONCLUSION

Despite the simplicity of the hard hypersphere fluid system, an exact solution
for its equation of state has not been derived for finite dimensions except for the
case(38) of D = 1. However, D = ∞ has been extensively analyzed(1−3) and it has
been shown that the higher order virial coefficients vanish identically. Thus, the
equation of state becomes:

Z = 1 + B2ρ (21)

But by Eq. 5 this means that G(1) = 1.
Equation 21 implies that fluctuations become less important as the dimen-

sion increases and this is readily apparent from a perusal of Figs. 2, 4 and 7.
Also, the value of of G(1) is expected to decrease as D → ∞. Our Monte Carlo
results are consistent with this expectation. For example, at a constant number
density of ρ = 0.70, in 6D, G(1) = 1.759(9); in 7D, G(1) = 1.510(7); and in 8D,
G(1) = 1.338(7). Similar results are observed at all number densities computed,
in agreement with this theoretical prediction.

Our Monte Carlo results in six, seven and eight dimensions have been ex-
tensively compared with results from molecular dynamics and many different
theoretical predictions for G(1). Excellent agreement is observed with the MD
results of Lue and Bishop.(34,37) In dimensions six and seven the Luban-Michels
approximation agrees more closely with the MC results than the Baus-Colot
prediction except for the two highest densities in seven dimensions. The Baus-
Colot approximation is better throughout the density range explored except at
the two lowest densities in eight dimensions. In seven dimensions, the new
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Robles et al.(33) Carnahan-Starling approximation agrees best with the Monte Carlo
values.

Our Monte Carlo results were also compared to the theory of Song, Mason and
Street(4) which is based on the Carnahan-Starling mean field theory. Since the mean
field theory of critical phenomena becomes exact above the critical dimension,
D = 4, for fluids, it is not surprising that the Monte Carlo results agree with the
SMS predictions at lower densities for six, seven and eight dimensions.

A variety of intriguing questions arise as the number density is increased
towards the transition density. It is well-known that systems even with only pure
repulsive interactions undergo a phase transition from the fluid to solid state in
dimensions two through five(39−43) and this is hypothesized at higher dimensions
as well.(44−46) The transition density increases(22) from a value of ρ ≈ 0.88 in
two dimensions, to ≈0.95 in three dimensions, to ≈1.0 in four dimensions and
then to ≈1.19 in five dimensions. These transitions were observed by following
the variation of the compressibility with density. Alternatively, the onset of the
transition is mirrored in the behavior of pair correlation function, e.g. a split second
neighbor peak is a signature of the phase transition. The trend of increasing
number densities for the freezing transition continues in six, seven and eight
dimensions. This is reflected in the lack of structure observed in the higher density
pair correlation functions reported here. One of our goals is to extend the MC
simulations to higher densities in order to probe the nature of this phase transition.

NOTE ADDED IN PROOF

A paper by Skoge et al.47 on packing hyperspheres in high-dimensional
Euclidean spaces has recently appeared. In that work they study jammed hard-
sphere packings in four, five and six dimensional systems via a molecular dynamics
method. They find, in agreement with our MC simulations, that the pair correlation
function indicates that short-ranged ordering appreciably decreases with increasing
dimension.
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